Thank you for purchasing this Esco Ductless Fume Hoods. Please read this manual thoroughly to familiarize yourself with the many unique features and exciting innovations we have built into your new equipment. Esco provides many other resources at our website, www.escoglobal.com, to complement this manual and help you enjoy many years of productive and safe use of your Esco products.
Copyright Information

© Copyright 2011 Esco Micro Pte. Ltd. All rights reserved.
The information contained in this manual and the accompanying product is copyrighted and all rights are reserved by Esco.
Esco reserves the right to make periodic minor design changes without obligation to notify any person or entity of such change.
Sentinel® and AscentMax® are registered trademarks of Esco.

“Material in this manual is provided for informational purposes only. The contents and the product described in this manual (including any appendix, addendum, attachment or inclusion), are subject to change without notice. Esco makes no representations or warranties as to the accuracy of the information contained in this manual. In no event shall Esco be held liable for any damages, direct or consequential, arising out of or related to the use of this manual.”
Table of Contents

<table>
<thead>
<tr>
<th>i</th>
<th>Table of Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>iii</td>
<td>Warranty Terms and Conditions</td>
</tr>
<tr>
<td>v</td>
<td>Introduction</td>
</tr>
<tr>
<td>v</td>
<td>1. Products Covered</td>
</tr>
<tr>
<td>v</td>
<td>2. Safety Warning</td>
</tr>
<tr>
<td>v</td>
<td>3. Limitation of Liability</td>
</tr>
<tr>
<td>vi</td>
<td>4. European Union Directives on WEEE and RoHS</td>
</tr>
<tr>
<td>vii</td>
<td>Declaration of Conformity</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>Chapter 1 – Product Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Quick View</td>
</tr>
<tr>
<td>1.2</td>
<td>Filtracheck</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>Chapter 2 – Control System</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Sentinel Control System</td>
</tr>
<tr>
<td>2.2</td>
<td>Menu Options</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Settings</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Setting Mode</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Field Calibration</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Admin Settings</td>
</tr>
<tr>
<td>2.3</td>
<td>Stopwatch and Experiment Timer</td>
</tr>
<tr>
<td>2.4</td>
<td>Alarm and Warnings</td>
</tr>
<tr>
<td>2.5</td>
<td>VOC Sensor</td>
</tr>
<tr>
<td>2.6</td>
<td>Diagnostic Mode</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11</th>
<th>Chapter 3 - Basic Hood Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Sash Window Operation</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Sash Window State</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Operating Motorized Sash Window</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Using Sash Window</td>
</tr>
<tr>
<td>3.2</td>
<td>Starting and Shutting Down the Ductless Fume Hood</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Turning on the Hood</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Turning off the Hood</td>
</tr>
<tr>
<td>3.3</td>
<td>Operating the Ductless Fume Hood</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Working in the Hood</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Working Ergonomics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15</th>
<th>Chapter 4 – Service and Maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Scheduled Maintenance</td>
</tr>
<tr>
<td>4.2</td>
<td>Maintenance/Service Log</td>
</tr>
</tbody>
</table>
Warranty Terms and Conditions

Esco products come with a limited warranty. The warranty period will vary depending on the product purchased, beginning on the date of shipment from any Esco international warehousing location. To determine which warranty applies to your product, refer to the appendix below.

Esco's limited warranty covers defects in materials and workmanship. Esco's liability under this limited warranty shall be, at our option, to repair or replace any defective parts of the equipment, provided if proven to the satisfaction of Esco that these parts were defective at the time of being sold, and that all defective parts shall be returned, properly identified with a Return Authorization.

This limited warranty covers parts only, and not transportation/insurance charges.

This limited warranty does not cover:

- Freight or installation (inside delivery handling) damage. If your product was damaged in transit, you must file a claim directly with the freight carrier.
- Products with missing or defaced serial numbers.
- Products for which Esco has not received payment.
- Problems that result from:
 - External causes such as accident, abuse, misuse, problems with electrical power, improper operating environmental conditions.
 - Servicing not authorized by Esco.
 - Usage that is not in accordance with product instructions.
 - Failure to follow the product instructions.
 - Failure to perform preventive maintenance.
 - Problems caused by using accessories, parts, or components not supplied by Esco.
 - Damage by fire, floods, or acts of God.
 - Customer modifications to the product
- Consumables such as filters (HEPA, ULPA, carbon, pre-filters) and fluorescent / UV bulbs.
- Esco is not liable for any damage incurred on the objects used on or stored in Esco equipment. If the objects are highly valuable, user is advised to have in place independent external preventive measures such as connection to a centralized alarm system.

Factory installed, customer specified equipment or accessories are warranted only to the extent guaranteed by the original manufacturer. The customer agrees that in relation to these products purchased through Esco, our limited warranty shall not apply and the original manufacturer’s warranty shall be the sole warranty in respect of these products. The customer shall utilize that warranty for the support of such products and in any event not look to Esco for such warranty support.

Esco encourages all users to register their equipment online at www.escoglobal.com/warranty or complete the warranty registration form included with each product.

ALL EXPRESS AND IMPLIED WARRANTIES FOR THE PRODUCT, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES AND CONDITIONS OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE LIMITED IN TIME TO THE TERM OF THIS LIMITED WARRANTY. NO WARRANTIES, WHETHER EXPRESS OR IMPLIED, WILL APPLY AFTER THE LIMITED WARRANTY PERIOD HAS EXPIRED. ESCO DOES NOT ACCEPT LIABILITY BEYOND THE REMEDIES PROVIDED FOR IN THIS LIMITED WARRANTY OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, ANY LIABILITY FOR THIRD-PARTY CLAIMS AGAINST YOU FOR DAMAGES, FOR PRODUCTS NOT BEING AVAILABLE FOR USE, OR FOR LOST WORK. ESCO’S LIABILITY WILL BE NO MORE THAN THE AMOUNT YOU PAID FOR THE PRODUCT THAT IS THE SUBJECT OF A CLAIM. THIS IS THE MAXIMUM AMOUNT FOR WHICH ESCO IS RESPONSIBLE.
These Terms and Conditions shall be governed by and construed in accordance with the laws of Singapore and shall be subject to the exclusive jurisdiction of the courts of Singapore.

Technical Support, Warranty Service Contacts

USA: 1-877-479-3726
Singapore: +65 65420833
Global Email Helpdesk: support@escoglobal.com
Visit http://www.escoglobal.com/ to talk to a Live Support Representative
Distributors are encouraged to visit the Distributor Intranet for self-help materials.

Product Appendix, Warranty Listings

<table>
<thead>
<tr>
<th>Product Type</th>
<th>Warranty Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological Safety Cabinets, Laminar Flow Cabinets, HEPA-Filtered Cabinets (except Streamline brand)</td>
<td>The warranty periods for BSC may vary by country. Contact your local distributor for specific warranty details.</td>
</tr>
<tr>
<td>Laboratory Fume Hoods</td>
<td>1 year limited.</td>
</tr>
<tr>
<td>Ductless Fume Hoods</td>
<td>3 years limited for Ascent Opti's, 5 years for Ascent Max's.</td>
</tr>
<tr>
<td>Cleanroom Equipment</td>
<td>1 year limited.</td>
</tr>
<tr>
<td>Laboratory Ovens and Incubators</td>
<td>1 year limited.</td>
</tr>
<tr>
<td>CO₂ Incubators</td>
<td>2 years limited.</td>
</tr>
<tr>
<td>Containment/Pharma Products</td>
<td>2 years limited.</td>
</tr>
<tr>
<td>Ultralow Temperature Freezer</td>
<td>3 years limited. 60 months on Compressor.</td>
</tr>
</tbody>
</table>

The warranty period starts two months from the date your equipment is shipped from Esco facility for international distributors. This allows shipping time so the warranty will go into effect at approximately the same time the equipment is delivered to the user. The warranty protection extends to any subsequent owner during the warranty period. Distributors who stock Esco equipment are allowed an additional four months for delivery and installation, providing the product is registered with Esco. User can register product online at www.escoglobal.com/warranty or complete the warranty registration form included with each product.

Policy updated on 12th Apr 2011 (This limited warranty policy does not apply to products purchased before 12th Apr 2011)
Introduction

1. Products Covered

<table>
<thead>
<tr>
<th>Electrical Rating</th>
<th>0.6 meters 2 feet</th>
<th>0.9 meters 3 feet</th>
<th>1.2 meters 4 feet</th>
<th>1.5 meters 5 feet</th>
<th>1.8 meters 6 feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>220-240 V AC, 50Hz, 1Φ</td>
<td>ADC-2B1</td>
<td>ADC-3B1</td>
<td>ADC-4B1</td>
<td>ADC-5B1</td>
<td>ADC-6B1</td>
</tr>
<tr>
<td></td>
<td>ADC-3C1</td>
<td>ADC-4C1</td>
<td>ADC-5C1</td>
<td>ADC-5C1</td>
<td>ADC-6C1</td>
</tr>
<tr>
<td></td>
<td>ADC-3D1</td>
<td>ADC-4D1</td>
<td>ADC-5D1</td>
<td>ADC-5D1</td>
<td>ADC-6D1</td>
</tr>
<tr>
<td></td>
<td>ADC-3E1</td>
<td>ADC-4E1</td>
<td>ADC-5E1</td>
<td>ADC-5E1</td>
<td>ADC-6D1</td>
</tr>
<tr>
<td></td>
<td>ADC-3C2</td>
<td>ADC-4C2</td>
<td>ADC-5C2</td>
<td>ADC-5C2</td>
<td>ADC-6C2</td>
</tr>
<tr>
<td></td>
<td>ADC-3D2</td>
<td>ADC-4D2</td>
<td>ADC-5D2</td>
<td>ADC-5D2</td>
<td>ADC-6D2</td>
</tr>
<tr>
<td></td>
<td>ADC-3E2</td>
<td>ADC-4E2</td>
<td>ADC-5E2</td>
<td>ADC-5E2</td>
<td>ADC-6D2</td>
</tr>
<tr>
<td>220-240 V AC, 60Hz, 1Φ</td>
<td>ADC-2B3</td>
<td>ADC-3B3</td>
<td>ADC-4B3</td>
<td>ADC-5B3</td>
<td>ADC-6B3</td>
</tr>
<tr>
<td></td>
<td>ADC-3C3</td>
<td>ADC-4C3</td>
<td>ADC-5C3</td>
<td>ADC-5C3</td>
<td>ADC-6C3</td>
</tr>
<tr>
<td></td>
<td>ADC-3D3</td>
<td>ADC-4D3</td>
<td>ADC-5D3</td>
<td>ADC-5D3</td>
<td>ADC-6D3</td>
</tr>
<tr>
<td></td>
<td>ADC-3E3</td>
<td>ADC-4E3</td>
<td>ADC-5E3</td>
<td>ADC-5E3</td>
<td>ADC-6D3</td>
</tr>
</tbody>
</table>

2. Safety Warning

- Anyone working with, on or around this equipment should read this manual. Failure to read, understand and follow the instructions given in this documentation may result in damage to the unit, injury to operating personnel, and / or poor equipment performance.
- Any internal adjustment, modification or maintenance to this equipment must be undertaken by qualified service personnel.
- The use of any hazardous materials in this equipment must be monitored by an industrial hygienist, safety officer or some other suitably qualified individual.
- Before you process, you should thoroughly understand the installation procedures and take note of the environmental / electrical requirements.
- In this manual, important safety related points will be marked with the symbol.
- If the equipment is used in a manner not specified by this manual, the protection provided by this equipment may be impaired.

3. Limitation of Liability

The disposal and / or emission of substances used in connection with this equipment may be governed by various local regulations. Familiarization and compliance with any such regulations are the sole responsibility of the users. Esco’s liability is limited with respect to user compliance with such regulations.
4. European Union Directive on WEEE and RoHS

The European Union has issued two directives:

 This product is required to comply with the European Union’s Waste Electrical & Electronic Equipment (WEEE) Directive 2002/96/EC. It is marked with the following symbol:

 Esco sells products through distributors throughout Europe. Contact your local Esco distributor for recycling/disposal.

- **Directive 2002/95/EC on Restriction on the use of Hazardous Substances (RoHS)**
 With respect to the directive on RoHS, please note that this hood falls under category 8 (medical devices) and category 9 (monitoring and control instruments) and is therefore exempted from requirement to comply with the provisions of this directive.
Declaration of Conformation
In accordance to EN ISO/IEC 17050-1:2010

We, Esco Micro Pte. Ltd.
of 21 Changi South Street 1
Singapore, 486777
Tel: +65 6542 0833
Fax: +65 6542 6920

declare on our sole responsibility that the product:

Category: Ductless Fume Hoods
Brand: Ascent Max
Model: ADC-2B1, ADC-3B1, ADC-4B1, ADC-5B1, ADC-6B1
 ADC-3C1, ADC-4C1, ADC-5C1, ADC-6C1
 ADC-3D1, ADC-4D1, ADC-5D1, ADC-6D1
 ADC-3E1, ADC-4E1, ADC-5E1

in accordance with the following directives:

has been designed to comply with the requirement of the following Harmonized Standard:

Low Voltage: EN 61010-1:2010
EMC: EN 61326-1:2006 Class B

More information may be obtained from Esco’s authorized distributors located within the European Union. A list of these parties and their contact information is available on request from Esco.

XQ Lin
Group CEO, Esco

This Declaration of Conformity is only applicable for 230V AC 50Hz units
Chapter 1 - Product Information

1.1 Quick View
1.2 FiltraCheck

FiltraCheck is a trademark service provided by Esco’s fume filtration division. Customers who intend to purchase a ductless fume hood but are unsure whether the cabinet is suitable for their application, can forward a list of chemicals that they will be handling and their pattern of usage to Esco’s FiltraCheck service team.

A PDF Questionnaire form is available at http://ductless.escoglobal.com/. This questionnaire can be downloaded and either forwarded by email or by fax to Esco. After careful analysis of the provided chemicals list and pattern of usage, a proper advice document will be generated and provided to the customer in 3 days period.

This document will recommend the appropriate laboratory equipment; ducted fume hood or ductless fume hood or neither based on the investigation done by the FiltraCheck team. Depending on the type of chemicals used, the document may also contain a list of procedures, warnings, etc. that will help in ensuring a safer laboratory working environment. In the case of a recommendation of a ductless cabinet, appropriate grade and type of activated carbon also becomes a factor that has to be taken into consideration.
Chapter 2 - Control System

2.1 Sentinel Control System

1. Fan Button
 - Turns on and turn off the fan.

2. Lamp Button
 - Turns on and turn off the lamp.

3. Socket Button
 - Turns on and turn off the electrical socket (retrofit kit).
 - The maximum rating of all the outlets in the cabinet is 5 A. If overloaded, the fuse will blow.

4. UV Button
 - Although present, this feature is not applicable.

5. Up (▲) and Down (▼) Arrow Button
 - Move upwards and downwards the menu options.
 - Increase and decrease corresponding value inside one of the menu options.
 - Move the sash window upward and downward (for motorized sash hood).

6. Set or Mute Button
 - Choose the menu or sub-menu currently displayed on the LCD screen.
 - Proceed to the next step or sequence inside one of the menu options.
 - Sash alarm can be muted by pressing Set button.

7. Menu Button

 Alarm is disabled when you enter menu options

 - To enter and exit from the menu options.
 - To go back to the previous level of the menu options.
 - To access maintenance mode from “AIRFAIL!” error condition.
2.2 Menu Options

SETTINGS
- **SET TIME** - HH:MM
 - 00:00:00 ≤ HH:MM:SS ≤ 17:59:59 (Default 00:00:00)
- **EXPERIMENT TIMER**
- **MEASUREMENT UNIT** - METRIC | IMPERIAL (Default METRIC)
- **WARM UP TIME** - 0 ≤ XX ≤ 15 (Default 3)
- **POSTPURGE TIME** - 0 ≤ XX ≤ 15 (Default 0)
- **DATA LOG PERIOD** - 00:00:00 ≤ HH:MM:SS ≤ 17:59:59 (Default 00:00:01)

SET MODE
- **NORMAL MODE**
- **QUICKSTART MODE**
- **MAINTENANCE MODE**

FIELD CALIBRATION
- **AIRFLOW CALIB**
- **RESET CALIBRATION**

MENU
- **NEW ADMIN PIN** - 000 ≤ XXX ≤ 9999 (Default 0009)
- **NEW FAN PIN** - 0000 ≤ XXXX ≤ 9999 (Default 0000)
- **AIRFLOW MONITOR** - ENABLE | DISABLE (Default ENABLED)
- **VOC DISPLAY** - ENABLE | DISABLE (Default ENABLED)
- **FILTER LIFE DISP** - ENABLE | DISABLE (Default ENABLED)
- **FILTER LIFE** - 12 | 9 | 6 MONTHS (Default 12 MONTHS)
- **FILTER REMINDER** - 000 ≤ XXX ≤ 600 (Default 600)
- **RESET F/H/M**
- **RESET DEFAULT**
- **AIRFLOW OUT TEMP** - ENABLE | DISABLE (Default DISABLED)
- **R1** 000000 ≤ XXXXX ≤ 999999
- **R2** 000000 ≤ XXXXX ≤ 999999
- **C1** 0000 ≤ XXX ≤ 9999
- **C2** 0000 ≤ XXX ≤ 9999
- **VOC T/L/V SETUP** - 050 ≤ XXX ≤ 200 (Default 150)
- **VOC ALARM** - ENABLE | DISABLE (Default ENABLED)
2.2.1 Settings
Users may use the settings menu function to customize the operation of the hood to meet specific application requirements. The settings menu can be entered using both FAN PIN and ADMIN PIN.

2.2.1.1 Set Clock (Time)
Users can set the time by increasing/decreasing the hour and minute values. The correct time will be maintained even after the unit is turned off.

![Menu Settings Set Time](HH:MM)

2.2.1.2 Experiment Timer (not applicable to motorized sash fume hood)
Experiment timer is a countdown timer that can be used for critical experiment. Experiment timer can be set between “00:00:00” and “17:59:59”.

![Menu Settings Experiment Timer](HH:MM:SS)

2.2.1.3 Measurement Unit
Using this option, the user can select the unit in which air velocity is measured and displayed. The user can choose between metric (m/s) and imperial (fpm).

![Menu Settings Measurement Unit](Metric, Imperial)

2.2.1.4 Warm Up Time
There will be a period of warm-up, before the fan is fully functioning. This is to ensure that the sensors, the blower, and the control system are stabilized, as well as purging the work zone of contaminants. The default setting is 3 minutes and the user can set it between 3 to 15 minutes.

During the warm up period, the user can use the FAN button to turn off the blower, LIGHT button to turn on and off the fluorescent lamp and MENU button. However, to be able to access the menu, the user need to input ADMIN PIN and even then, some portions of the menu (WARM UP and all FIELD CALIBRATION) is still not accessible for the user. Entering the menu during this time will pause the warm up period.

![Menu Settings Warm Up Time](XX Minutes)

2.2.1.5 PostPurge Time
After the user switches off the blower, there will be a post-purge period, to ensure that all contaminants are purged from the work zone. The default setting is zero minute (disable) and user can set it between 0 to 15 minutes. However, it is recommended to purge the hood for around 3 minutes after the work is complete.

![Menu Settings PostPurge Time](XX Minutes)

2.2.1.6 Data Log Period
Using RS232 communication port, the fume hood can send data on the condition of the BSC to a PC. Data Log Period option allows the user to control the amount of time in between the BSC data sending procedure.

![Menu Settings Data Log Period](HH:MM:SS)

2.2.2 Setting Mode
The hood has three working mode; two of which, normal mode and quickstart mode, can be used in daily activity. Both of these modes can be seen and accessed when you enter the FAN PIN.

2.2.2.1 Normal Mode
The normal mode is activated by factory default. In this mode, all alarms and interlocks are enabled.

2.2.2.2 Quickstart Mode
Quickstart mode allows the user to activate the blower and the light simply by opening the sash window to the operating position. In this mode, all alarms and interlocks are enabled.

2.2.2.3 Maintenance Mode
Maintenance mode should only be accessed by qualified personnel during maintenance. In this mode, all alarms are disabled and all interlocks are defeated.

2.2.3 Field Calibration
The purpose of calibration is to ensure the accuracy of the airflow display and alarm (if present). This involves measuring airflow with reference instrumentation and establishing reference between airflow sensor(s) on the BSC to the standard reference. Calibration should only be carried out by trained personnel. This section presents a brief overview of the calibration menu function. For more information, refer to test report.

2.2.3.1 Airflow Calibration
This option allows proper calibration and operation of the airflow sensor alarm. There will be three points to be calibrated, namely inflow fail point, inflow nominal point, and downflow nominal point.

2.2.3.2 Reset Calibration
This option allows the user to reset all value calibrated in the field and return it to the values gathered in factory calibration.

2.2.4 Admin Settings
The admin menu allows you to change both FAN and ADMIN PIN. The reset blower, filter and UV hour meter functions are usually used after you change the blower, filter or UV lamp as they can easily give you the indication on when to do BSC maintenance. While the reset default function will return the options in the settings menu to their factory settings.

2.2.4.1 New ADMIN PIN (default 0009)
ADMIN PIN restricts access to some of the more delicate menu functions, namely admin and field calibration, which should only be accessed by a qualified personnel. User must enter four digits ADMIN PIN before accessing these menus.

ADMIN PIN can also be used to switch to maintenance mode from error condition.
2.2.4.2 New FAN PIN (default 0000 - DISABLED)

FAN PIN restricts access to fan control and some parts of the menu, settings and set mode. User must enter four-digit PIN before switching fan on or off. As such, it can restrict access to operating the hood by unauthorized personnel. It will also prevent unauthorized shutdown of the hood when continuous operation is required. Fan PIN is also needed to disable the alarm when the sash is fully raised and cleaning needs to be performed.

Setting the PIN to 0000 will disable this feature. The FAN PIN is disabled by default. When the FAN PIN is disabled, the hood can be turned on and off without requiring PIN, however to access the menu, the user is still required to enter the FAN PIN (0000).

2.2.4.3 Airflow Monitor

Whenever the air velocity falls below the fail point, the air fail alarm will be triggered. This option is used to enable/disable alarm. The alarm is enabled by default.

When the Airflow Monitor is disabled, the warm up period is removed. But the airflow will not be displayed for the first three minutes.

If the ambient temperature is outside of 18-30°C (which is the cabinet working temperature), the Airflow Monitor is automatically disabled.

2.2.4.4 VOC Display

This option is to determine whether the VOC sensor status ("VOC:NO", "VOC:YES", or "VOC:RDY") is displayed on the LCD.

2.2.4.5 Filter Life Display

Using this option, the user can select whether the filter life is displayed or not. Filter life is calculated based on the filter life value (section 2.2.4.6).

2.2.4.6 Filter Life

To set the filter life value. The time can be chosen between 12, 9 or 6 months. It is recommended to set the filter life according to the FiltraCheck recommendation. The default value is 12 months.
2.2.4.6 Filter Reminder
To set the time between reminder to check for carbon filter saturation.

2.2.4.7 Reset F/H/M
This option is used to reset the filter hour meter. The filter hour meter indicates how long the filter has been in operation. The counter value can be checked while in the diagnostic mode. Please reset the filter hour meter after each filter replacement.

2.2.4.8 Reset B/H/M
This option is used to reset the blower hour meter. The blower hour meter indicates how long the blower has been in operation. The counter value can be checked while in the diagnostic mode. The value can also provide some help in setting up maintenance schedule.

2.2.4.9 Reset Default
User can reset the default setting by choosing this option. The features being reset are warm-up period (3 minutes), post-purge period (0 minute), measurement unit (Metric), airflow monitor (enabled), ADMIN PIN (0009), Filter Life Display (enabled) and FAN PIN (0000).

Note that the calibration settings cannot be reset as it may cause the hood to operate in an unsafe manner. The hour meters cannot be reset either.

2.2.4.9 Airflow Out Temp
Using this option, the user can select the whether or not to display the airflow when the ambient temperature is out of optimum temperature range, below 18°C (65°F) or above 30°C (86°F).

2.2.4.10 VOC Sensor Setup
This setting is intended to enter the VOC sensor parameters based on the sensor label/test report. The value must be set correctly to ensure sensor reading accuracy. When selected, a warning message will occur to remind the user.

2.2.4.11 VOC Threshold Level Value Setup
User might set the VOC alarm threshold level value. This value might be different for particular chemical. Or the user might need to lower the alarm threshold to have them warned earlier. When selected, will display entry field to set VOC alarm threshold; allowable range is 50 to 200 ppm, set to 150 by default.

2.2.4.12 VOC Alarm
This option is to determine whether VOC concentration is monitored and an alarm is raised if it is over the threshold.
2.3 Stopwatch and Experiment Timer (Only for non-motorized sash hood)

- The stopwatch function can be started by pressing the UP button while the sash is in the safe/ready position. Pressing UP button again while the stopwatch function will stop and resume the timer. Pressing DOWN button will leave the stopwatch function and reset the timer. The timer in the stopwatch function is counting up and shown using the HH:MM:SS format.
- The experiment timer can be started by pressing the DOWN button while the sash is in the safe/ready position. Pressing DOWN button while the experiment timer function is working will stop and resume the timer. Pressing the UP button will leave the experiment timer function and reset the timer. The timer in the experiment timer function is counting down and shown using the HH:MM:SS format. Operator can use the SETTINGS | EXPERIMENT TIMER menu (refer to section 2.2.1.2) to set the experiment timer.

2.4 Alarm and Warnings

The warning AIR FAIL! indicates that there is airflow failure. The operator should check if there is any obstruction to the airflow, and correct it if possible. However, if the problem continues, the operator should stop working as the hood’s protection may have been compromised. Call service or Esco’s local distributor.

Other alarms that indicate a failure or an error in the BSC system:
- ERR.AIRFAIL will be displayed if the blower is turned off while there is an airflow failure.
- ERR.CALIB will be displayed if the airflow velocity sensor is not yet calibrated.

2.5 VOC Sensor

VOC Status
- Displays “VOC:NO” if the VOC sensor is not installed or the connection is failed.
- Displays “VOC:YES” if the VOC sensor is installed, but not setup yet.
- Displays “VOC:RDY” if the VOC sensor is installed, setup, and ready to use.

The display might unintentionally change from “VOC:RDY” to “VOC:YES” if the wiring connection has ever been disrupted for a while. User should have qualified personnel to check whether the VOC sensor is good and correct.

VOC Alarm
- Displayed as “VOC ALARM!” message on the fourth row whenever the detected VOC concentration is higher than the TLV (Threshold Level Value). The message will disappear if the detected value is slightly lower than the TLV. The TLV is in ppm units.
- User should immediately stop the experiment activity and let the unit running to flush the air. Any chemical source under the hood should be closed whenever possible. If the unit has no backup filter, it might be necessary for the user to left the room until the alarm stops.
- Current estimated VOC concentration can be checked in the diagnostic, at parameter “EST. VOC”.
- The alarm can be muted for 30 seconds by pressing MUTE button (crossed speaker symbol).

Note on VOC Sensor:
- VOC sensor is meant to detect particular organic vapour (mainly alcohol derivatives) only. It is less or insensitive to other type of vapour. Do not attempt to use the sensor for improper materials such as ammonia or hydrocarbon vapour.
- The detected VOC value is an estimate only. Use with cautions and provide standard instruments to measure the actual value.
- The sensor might degrade and affects it’s accuracy if some conditions encountered. Such as exposure to silicon vapour, under extremely low or high humidity, or extremely low O2 concentration.
- If the sensor is suspected to degrade, contact technical service for replacement.
2.6 Diagnostic Mode

<table>
<thead>
<tr>
<th>On Screen</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODE</td>
<td>Shows which mode is active: NORMAL MODE, QUICKSTART MODE or MAINTENANCE MODE.</td>
</tr>
<tr>
<td>VERSION</td>
<td>Shows the version of the software; eg: CP107 V 1.0.</td>
</tr>
<tr>
<td>TEMPERATURE</td>
<td>Shows the temperature inside the cabinet.</td>
</tr>
<tr>
<td>B/H/M</td>
<td>Blower Hour Meter – increase by the hour.</td>
</tr>
<tr>
<td>F/H/M</td>
<td>Filter Hour Meter – increase by the hour.</td>
</tr>
<tr>
<td>FLTR REMIND</td>
<td>Time between reminder to check the filter.</td>
</tr>
<tr>
<td>FILTER LIFE</td>
<td>Shows percentage of filter life (based on Filter Hour Meter) and expected filter life of 10000 hours.</td>
</tr>
<tr>
<td>FILTER DISP</td>
<td>Filter life display status.</td>
</tr>
<tr>
<td>AF OUT TEMP</td>
<td>Airflow velocity display status when temperature is out of range</td>
</tr>
<tr>
<td>VOC DISPLAY</td>
<td>Voc sensor result display status.</td>
</tr>
<tr>
<td>ADC IFF</td>
<td>ADC for Fail Point Inflow – calculated using offset based on Inflow Nominal Point.</td>
</tr>
<tr>
<td>ADC IFN</td>
<td>ADC for Nominal Point Inflow – based on field calibration.</td>
</tr>
<tr>
<td>ADC IFA</td>
<td>ADC for Actual Inflow – showing real time sensor reading.</td>
</tr>
<tr>
<td>ADC IF0</td>
<td>ADC for factory calibrated Zero Point Inflow (no inflow).</td>
</tr>
<tr>
<td>ADC IF1</td>
<td>ADC for factory calibrated Fail Point Inflow.</td>
</tr>
<tr>
<td>ADC IF2</td>
<td>ADC for factory calibrated Nominal Point Inflow.</td>
</tr>
<tr>
<td>ADC A2 R0</td>
<td>ADC value for zero resistance calibration of VOC sensor.</td>
</tr>
<tr>
<td>ADC A2 R1</td>
<td>ADC value during span resistance calibration of VOC sensor.</td>
</tr>
<tr>
<td>R1 VALUE</td>
<td>Measured span resistor value</td>
</tr>
<tr>
<td>VOC R1</td>
<td>VOC sensor R1 parameter</td>
</tr>
<tr>
<td>VOC R2</td>
<td>VOC sensor R2 parameter</td>
</tr>
<tr>
<td>VOC C1</td>
<td>VOC sensor C1 parameter</td>
</tr>
<tr>
<td>VOC C2</td>
<td>VOC sensor C2 parameter</td>
</tr>
<tr>
<td>VOC SENSOR</td>
<td>VOC sensor presence and calibration status</td>
</tr>
<tr>
<td>ADC VOC</td>
<td>ADC value of the VOC sensor result</td>
</tr>
<tr>
<td>EST. VOC</td>
<td>Estimated VOC density</td>
</tr>
<tr>
<td>VOC LIMIT</td>
<td>VOC alarm threshold density (in ppm)</td>
</tr>
<tr>
<td>CONSTANT</td>
<td>airflow sensor constant. This value is needed when ordering a new sensor.</td>
</tr>
<tr>
<td>CALIB TEMP</td>
<td>Temperature when the factory calibration was performed.</td>
</tr>
<tr>
<td>ADC TEMP</td>
<td>ADC value for temperature.</td>
</tr>
<tr>
<td>M_SWITCH1</td>
<td>Shows the condition of magnetic switch 1 – safe position.</td>
</tr>
<tr>
<td>M_SWITCH2</td>
<td>Shows the condition of magnetic switch 2 – fully closed position.</td>
</tr>
</tbody>
</table>
3.1 Sash Window Operation

3.1.1 Sash Window State

- **Sash is fully open**
 - ✔ Blower can be active
 - ✔ Fluorescent lights can be used
 - ✗ Unsafe working condition

- **Sash is in safe position**
 - ✔ Blower can be activated
 - ✔ Fluorescent lights can be used
 - ✔ Safe working condition

- **Sash is fully closed**
 - ✗ Blower can’t be activated
 - ✗ Fluorescent lights can’t be used

3.1.2 Operating Motorized Sash Window (Only for hoods with motorized sash window)

The motorized sash uses a “push and hold” mechanism, so if you remove your finger from the button the sash will stop immediately – this is a safety feature to control the closure and prevent anything getting trapped in the aperture as the sash descends.

Lower Sash from Fully Open Position

When the sash is fully open, pressing the down button and holding it will cause the sash to move to the Safe Height setting and stop. If the fluorescent lights are on as the sash descends, they will stay on as long as the sash stops in the Safe Position. If you release the button before the sash has reached Safe Position the lights will switch off automatically.

Lower Sash from Safe Height Position

When the sash is at safe operating height pressing the down button and holding it will cause the sash to move down to the fully closed position and stop. If the fluorescent lights are on as the sash descends, they will switch off automatically as soon as the sash reaches fully closed. If you release the button before the sash has reached the fully closed position the lights will switch off automatically.

Raise Sash from Fully Closed Position

When the sash is fully closed, pressing the up button and holding it will prompt the user to input the password to turn on the fan. If the password is correct, if it was on fan will turn on and the sash will move up to the Safe Height setting and stop.

Raise Sash from Safe Height Position

When the sash is safe operation position, pressing the up button and holding it will cause the sash to move up to the fully open position and stop. If the fluorescent lights are on as the sash rises, they will stay on as long as the sash is allowed to fully open. Stopping the sash midway will cause the lights to switch off automatically.
3.1.3 Using Sash Window
- The sash window should be fully closed when the hood is not in use. This helps keep the work zone interior clean.
- The sash window should always be in the normal operating height at all times when the hood is in use. Even if the cabinet is left unattended, but the blower is on, the sash window should never be moved from the normal operating height, unless during loading or unloading of materials/apparatus into the hood.
- The alarm will be activated whenever the sash window is moved from the normal operating height.
- Whenever the sash window is moved to the correct height from a higher or lower position, the light will automatically be turned on as a signal to the user.
- The sash window may be opened to its maximum position for the purpose of loading/unloading of materials/apparatus into the hood. When the sash window is fully opened, the alarm sound may be muted by pressing MUTE button but, will be automatically sounded again after 5 minutes to remind the user that it is not safe to work in the cabinet and the light will be turned on to facilitate cleaning.

3.2 Starting and Shutting Down the Ductless Fume Hood

3.2.1 Turning on the Hood
1. Raise the sash to the indicated normal operational height (READY state). The lamp will turned on when this height is reached.
2. Turn on the fan by pressing the FAN button. Input the Fan PIN if asked (default: 0001). This will start the warm up procedure (default: 3 minutes). All buttons are disabled during warm up period.
3. The hood is ready for work.

3.2.2 Turning off the Hood
1. Turn off the fan by pressing the FAN button. Input the Fan PIN if asked (default: 0001). This will start the post purge procedure (default: 0 minute). All buttons are disabled during post purge period.
2. Lower the sash to the fully closed position. The sash can be lowered immediately after turning off the fan as it will not interrupt the post purge procedure.

3.3 Operating the Ductless Fume Hood

3.3.1 Working in the Hood
- Check the label on the ductless fume hood to see what chemicals the hood is intended for – and only use the hood for any procedure involving such chemicals.
- Ensure the exhaust is operating before commencing work.
- After all the apparatuses/items have been arranged, allow the blower to run for another 3 minutes in order to purge work zone of contaminants.
- Minimize room activity since these external airflow disturbances may adversely affect the hood’s internal airflow, impairing the containment capabilities of the fume hood.
- Keep your head outside of the hood.
- Work as far into the hood as possible and with slow, deliberate movements, to minimize airflow disturbances.
- Work with the sash as fully lowered as possible, utilizing the sash as a natural barrier.
- Do not use this hood as a storage area. Items can block airflow and interfere with containment.
- If performance is suspected, or an airflow alarm is triggered (if installed), terminate usage, close the sash completely, and cease work.
- Do not let organic chemicals evaporate in the hood – use a proper waste bottle. Do not leave uncapped bottles of chemicals or waste in a hood.
- Certify this hood annually to verify airflow velocity, smoke patterns and containment.
- Perform routine maintenance in accordance with the manufacturer’s instructions.
3.3.2 Working Ergonomics

On most occasions, you would most likely be operating the fume hood in sitting rather than standing posture. There are some obvious advantages of the sitting posture:

- The physiological energy cost and fatigue involved in sitting are relatively less
- Sitting posture provides the body with a stable support

However, sitting position has some drawbacks too:

- The working area available is fairly limited
- There is a potential risk of being constrained in the same posture for a long time
- Sitting posture is one of the most stressful postures for one’s back

Therefore you should pay careful attention to the following guidelines in order to achieve comfortable and healthy working conditions:

1. Always ensure that your legs have enough legroom.
2. Keep your lower back comfortably supported by your chair. Adjust the chair or use a pillow behind your back whenever necessary.
3. You should place your feet flat on the floor or on a footrest. Don’t dangle your feet and compress your thighs.
4. You should keep varying your sitting position throughout the day at regular intervals so that you are never in the same posture for too long.
5. Observe the following precautions with respect to your eyes:
 - Give your eyes frequent breaks. Periodically look away from the work area and focus at a distant point.
 - Keep your glasses clean.
6. Arrange the items/apparatus frequently used in your work in such a way that you can minimize the physical strain involved in handling them.
7. Exercise regularly

Ergonomics accessories available with Esco include:

a. Armrest padding
b. Lab chair
c. Footrest

Please contact your local distributor or Esco for more information.
Chapter 4 – Maintenance

4.1 Scheduled Maintenance

Proper and timely maintenance is crucial for trouble free functioning of any device and your Esco ductless fume hood is no exception to this rule. We strongly recommend that you follow the maintenance schedule suggested hereunder in order to obtain optimal performance from your Esco ductless fume hood.

<table>
<thead>
<tr>
<th>No.</th>
<th>Description of Task to Perform</th>
<th>Maintenance to be carried out every</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Week</td>
</tr>
<tr>
<td>1</td>
<td>Check the alarm and measure the basic airflow</td>
<td>√</td>
</tr>
<tr>
<td>2</td>
<td>Clean the interior work surface and walls with soap water</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Wipe down sash with appropriate glass cleaner</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Clean the exterior surfaces of the ductless fume hood</td>
<td>√</td>
</tr>
<tr>
<td>5</td>
<td>Measure the ductless fume hood face velocity</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Check fans, motors, drives and bearings for proper operation</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Check fluorescent tubes for proper operation</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Test the operation of airflow alarm</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Repair defect and lubricate as necessary</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Clean the stainless steel surface using MEK</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Re-certification</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Change the fluorescent lamps</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Check filter saturation</td>
<td></td>
</tr>
</tbody>
</table>

Cleaning the Hood

- Clean the work surface and walls with soap water
- Clean the sash window using an appropriate glass cleaner
- Use a damp cloth to clean the exterior surface of the fume hood, particularly on the front and top in order to remove dust that accumulated there
- Use clean water to finish the cleaning and wash away any residue from the soap water and glass cleaner
- For removing stubborn stains or spots on the stainless steel surface, make use of MEK (Methyl-Ethyl-Ketone). In such cases, make sure that you wash the steel surface immediately afterwards with clean water and some liquid detergent. Use a polyurethane cloth or sponge for washing. Regularly cleaning the stainless steel surface can help you retain the attractive factory finish.

Test the audible and visual alarm

If possible, cover the airflow sensor; otherwise cover the perforations on the back wall – this should disrupt the airflow of the hood enough to activate the alarm

Check the hoods functionality

- Check the hood’s mechanical functionality; ex: sash window – lubricate if necessary
- Check the hood’s electrical functionality; ex: fluorescent lamp – replace if necessary
- Check the hood for any defect, repair immediately
Check filter saturation
Check for filter saturation often. The saturation level of a filter is directly affected by the amount of chemical fume generated by the experiment conducted inside the fume hood. Use particle counter below and above the main (and backup) filter and compare the results to check the saturation level of the carbon filter. (See Appendix for a simple carbon filter saturation check using the hood’s sampling port)

Replacing the Carbon Filter
1. Lower the sash glass and open the front cover
2. Open the carbon filter cover
3. Open the toggle clamp
4. Replace the filter
5. Reverse the above steps

Re-certification
All ductless fume hoods must be re-certified annually by a certified engineer.

4.2 Maintenance/Service Log
It is good practice (and in some cases regulatory requirement) to maintain a log of all maintenance work carried out on your freezer.
APPENDIX
FILTER SATURATION TEST

INTRODUCTION
Electronic detectors for monitoring filter saturation (efficiency) have not been shown to be sufficiently reliable for the range of gases used in school/lab and over a reasonable time scale; therefore chemical tests are needed.

As there are strict limits to the concentrations of hazardous gases in air which can be breathed, it is necessary to test the efficiency of the filter regularly. Further, it is prudent to conduct an initial test to ensure that the filter is seated properly and that its contents have not been displaced in transit. It is advisable to test for this every time the filter is replaced.

There are 3 methods according to the COSHH regulation to test for filter saturation by chemical (acid gases).

- Propan-2-ol challenge test (BS 7989:2001 Standard)
- Method using a canister (cease to be practicable)
- Method using the burning sulphur (BS 7989:2001 Standard)
- Test for saturation by organic gases (limited usage)

For our purpose, Esco will be using the propan-2-ol challenge and burning sulphur test method.

PROPAN-2-OL CHALLENGE TEST
The rate of release of propan-2-ol vapor is calculated by evaporating a weighted quantity of propan-2-ol for a measured time. The filter challenge concentration and filter efficiency are then calculated as shown.

APPARATUS
- Gas detection kit
- Propan-2-ol
- Anti-bumping granules
- Balance, weighting to 0.1 gram or less
- Stop clock
- 250 ml conical flask, with a stopper.
- Hotplate

PROCEDURE
1. Determine the air volume flow rate through the fume cupboard and record the value as \(F_a \) in m\(^3\)/min.
2. Pour about 100 ml of propan-2-ol into a preweighted, stoppered, conical flask containing a few anti-bump granules. Record the weight of solvent added as \(M_1 \) in gram.
3. Set up the hotplate in the fume cupboard. Switch on the fume cupboard, remove the stopper from the flask and place the flask in on the hotplate.
4. As the propan-2-ol begins to boils, the vapour condenses on the cooler parts of the flask forming a boundary line. When the boundary reaches the top of the flask, start the stop clock.
5. After 60s, take a reading of the concentration of propan-2-ol in the exhaust gas emitted by the fume cupboard using a gas detection kit with a suitable tube. Repeat the measurement at 5 min. record the highest concentration in ppm. Convert the concentration from ppm to mg/m\(^3\) using the formula below and record as \(C_e \) in mg/m\(^3\).
6. When the last of the propan-2-ol has evaporated, stop the clock, noting the time of the run as \(t \) in second.

CALCULATION
- Calculate the total volume \(V_a \) in m\(^3\) of air passed through the fume cupboard during test: \(V_a = F_a \times t / 60 \)
- Calculate the challenge concentration in mg/m\(^3\): \(C_o = 1000 \times M_1 / V_a \)
- Calculate the filter efficiency (%): Filter efficiency = \(100 \times (C_o - C_e) / C_o \)
- Conversion from ppm to mg/m\(^3\): Concentration in mg/m\(^3\) = Concentration in ppm x 60.1 / 24
METHODS USING BURNING SULPHUR

The rate of release of sulphur dioxide is calculated by weighing the vessel containing the sulphur dioxide before and after it has burning for a measured time. It is satisfactory provided
a) the Bunsen burner is turned off once the burning of sulphur starts and
b) the apparatus is sited as far forward in the fume cabinet as possible to obtain complete combustion.

The item required are powered roll sulphur (150-200 g), a flat-bottom porcelain evaporating basin, a gas detection kit, a balance weighting to 0.1g or less, a stop clock, Bunsen burner, two gauze squares both with ceramic circular centres, a tripod, a heat-proof mat and a ruler. Wear eye protection. Sulphur dioxide is a toxic gas, so do not breathe it in.

1. Powder the roll sulphur in a mortar with a pestle.
2. Fill a flat-bottom porcelain evaporating basin with the sulphur so that it is level with the rim.
3. Weigh the porcelain basin, the sulphur and one of the gauzes (M1 grams).
4. Set up the Bunsen burner, tripod, the other gauze and the evaporating basin on a heat-proof mat so that the centre of the basin is 5cm inside the upper rim of the aperture (This places the sulphur in the maximum incoming draught and encourages complete combustion).
5. Switch on the fume cabinet.
6. Light the Bunsen burner with the gas tap half-open and the collar open enough so that the flame is non-luminous.
7. The sulphur melts slowly to a pale amber liquid. Remove the Bunsen burner from under the gauze and adjust the collar so that it is half-open. Place it back under the gauze very carefully (The liquid will quickly darken. Changes in the appearance of the liquid surface indicate that burning is about to start. Sulphur catches light with a blue flame).
8. Start the stop-clock when half of the surface of sulphur has caught alight. Immediately turn off the Bunsen burner at the gas tap.
9. After 60 seconds, take reading of the concentration of the sulphur dioxide being emitted through the exhaust with a gas detection kit. A slight smell of sulphur dioxide should be ignored but, if the exhaust gas causes breathing difficulties, stop the test.
10. Place the other gauze (which was used in the weighing) on top of the basin and stop the clock, noting the time (t seconds)
11. When the sulphur has cooled down for about 20 minutes and solidified, reweigh the basin, the remaining sulphur and the gauze (M2 grams).

The sulphur and dish may be kept and used the next time the test is carried out. A little more powdered roll sulphur may need to be added to make up for any lost in the previous burning.

CALCULATION

Rate of release of sulphur dioxide = (M1-M2) x 750 / t cm3 s$^{-1}$

Now check your result with the table below.

<table>
<thead>
<tr>
<th>Rate of sulphur dioxide released (cm3 s$^{-1}$)</th>
<th>Maximum permitted concentration of sulphur dioxide in the exhaust gas (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>05</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>25</td>
<td>5</td>
</tr>
<tr>
<td>30</td>
<td>6</td>
</tr>
</tbody>
</table>
LOG RECORD

Fume Hood : __
Serial Number : __
Person in Charge : __

1. This log record should be used by the operator to record any new chemicals that has been introduced to the fume hood during its operation, problems encountered, etc.
2. Please also record any major maintenance procedure performed by the service technician, for example: parts replacement, recertification, etc.

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>User Signature</th>
<th>Supervisor Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In case of emergencies, please call:
Name : __
Cell Phone Number : __
E-mail : __