Low Noise, Class II Biological Safety Cabinets
The Safety Solution for Life Science Laboratories
Main Features

- Low noise level of 53.5 dBA*, among the quietest cabinet in the industry.
- Unique Esco Dynamic Chamber™ plenum.
- Negative pressure plenum surrounds contaminated positive pressure plenum; no fabric bags are used.
- Dual, long-life ULPA filters for supply and exhaust (per IEST-RP-CC001) with 99.999% efficiency for particle size between 0.1 to 0.3 microns.
- Angled supply filter matches cabinet profile to achieve the best downflow uniformity.
- Esco Sentinel™ Gold microprocessor.
- Quickstart mode, to turn the blower and lights on/off, by moving the sash window to correct position.
- RS 232 data output port enables remote monitoring of cabinet operating parameters.
- Frameless sash that is easier to clean and provides wider view of work zone.
- Ergonomically angled front improves reach and comfort.
- Actual work access height is 45 mm (1.8") higher than tested sash opening.
- Removable one-piece work surface simplifies cleaning.
- Raised airflow grille maintains safety by preventing blockage.
- Esco ISOcide® antimicrobial coating on all painted surfaces minimizes contamination.
- Enhanced side-capture zones optimize containment.
- Work area on Esco 0.9 meter (3') cabinet is equivalent to work area offered on larger 1.2 meter (4') conventional cabinet.

* Ultra low noise level achieved on 1.2 meter (4') model per EN12469 at open field condition.

The cabinets are KI-Discus tested on sampling basis for performance integrity. Available in 0.9, 1.2, 1.5 and 1.8 meter (3', 4', 5' and 6') models. Shown with optional telescoping stand.
Containment and Protection

- The inflow and downflow balance is precisely established by an external exhaust damper and is adjustable without decontaminating the cabinet.
- Inflow of room air enters the front air grille to establish operator protection; room air does not enter the work zone, preventing product contamination.
- The front grille has proportionally larger perforations on the extreme left and right side. Combined with the side air gap between the work tray and the side wall, the stronger side capture zones increase protection in this critical area where contaminants tend to bleed out in conventional cabinets.
- The inflow velocity, downflow velocity, and air flow path, and intake geometry are precision tuned and tested to create an optimum air curtain on the front aperture; this curtain maintains personnel and product protection even in the unlikely event of a severe inflow or downflow imbalance that would compromise protection in a conventional cabinet.

Integrated Filtration System

A combination of a supply ULPA filter and an exhaust ULPA filter give the Labculture cabinet a fully integrated performance envelope for product, operator and environmental protection.

- ULPA filters (per IEST-RP-CC001), are tested to a typical efficiency of >99.999% for 0.1 to 0.3 micron particles; these provide better filtration capability than conventional HEPA filters that have a typical efficiency of ≥99.99% for 0.3 micron particles.
- Modern separator-less mini-pleat filter construction maximizes the filter surface area to extend filter life and eliminate possible filter media damage by thin and sharp aluminum separators used in conventional HEPA filter construction.

Front Sash Assembly

- Integrated sash proximity contacts sense proper sash position, serve as an interlock for the UV lamp, and activate an alarm if the sash is improperly positioned.
- The magnetic switch eliminates the chance of wear and tear typical of a mechanical switch.
- The back of the sash can be easily cleaned by removing the sash track cover and swinging up the sash glass.
- The sash is counterbalanced for smooth, lightweight operation.
- The counterbalance locking mechanism is inherently safe; it locks the counterbalance in place if either of the two cables is detached. The sash cable and cable clip have rated strength of more than 6 times the weight of the sash window of the largest Labculture Class II cabinet (1.8 meter / 6 ft. model).

Esco ULPA Filter Efficiency

Typical Penetration

<table>
<thead>
<tr>
<th>(%) Typical Penetration</th>
<th>Particle Size [µm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00100</td>
<td>0.05</td>
</tr>
<tr>
<td>0.00150</td>
<td>0.10</td>
</tr>
<tr>
<td>0.00150</td>
<td>0.15</td>
</tr>
<tr>
<td>0.00200</td>
<td>0.20</td>
</tr>
<tr>
<td>0.00250</td>
<td>0.25</td>
</tr>
<tr>
<td>0.00300</td>
<td>0.30</td>
</tr>
<tr>
<td>0.00350</td>
<td>0.40</td>
</tr>
<tr>
<td>0.00400</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Esco cabinets use ULPA filters (per IEST-RP-CC001) instead of conventional HEPA filters commonly found in biological safety cabinets. While HEPA filters offer 99.99% typical efficiency at 0.3 micron level, ULPA filters provide 99.999% typical efficiency for particle sizes of 0.1 to 0.3 micron level.
Blower Efficiency

The Labculture blower system is designed for high performance operation, maximum energy efficiency and minimal maintenance.

- The external rotor motor design allows for optimum cooling of the motor during extended operations and extends the motor bearing life.
- The permanently lubricated direct-drive external rotor motor/blower reduces operating costs.
- Built-in RFI and electrical noise filters eliminate interference with adjacent instrumentation.
- An integral blower hour meter tracks operating life for predictive maintenance planning.
- To prevent fan damage, a paper-catch grille traps papers or towels that may drop down on the drain pan, preventing them from being pulled into the column by fan suction.

Sentinel™ Gold Microprocessor Control, Alarm, Monitoring System

The Esco Sentinel™ Gold microprocessor-based control system supervises operation of all cabinet functions.

- The control panel is located on the center of the cabinet, and angled down for easy access by the operator
- Continuous monitoring of cabinet airflow is displayed on a bright, easy-to-read LCD panel.
- An integrated, temperature-compensated, true airflow velocity sensor provides an accurate airflow reading despite room temperature fluctuation.
- All electronic parts are contained inside a plug-and-play module that permits easy exchange if required.

- Microprocessor software updates are available from Esco for download via the Internet.

Sentinel functions are factory set to default to ON or OFF, depending on worldwide destination and local preferences. Default settings can be user activated through the touchpad data entry access.

- Automatic start-up sequence will prepare the cabinet for normal operation and advise when safe conditions are established.
- Selectable Quickstart mode, to automatically turn on/off the cabinet blower and lights by simply moving the sash window to the correct position.
- An administrator controlled PIN (Personal Identification Number) can be set to restrict access to main menu.
- The airflow alarm can be activated or deactivated depending on user preference and nature of the work.

Consult your Esco Operating Manual or contact your Sales Representative for information on user-preference programming capabilities built into the Sentinel microprocessor platform.

- The field calibration mode makes it easier for certifiers to calibrate the airflow display.
- RS 232 data output port enables remote monitoring of cabinet operating parameters.

Cabinet Filtration System

Side capture zones

Dynamic air barrier, inflow and forward-directed downflow air converge

- Ambient air is pulled through the perforations located towards the work zone front to prevent contamination of the work surface and work product. The inflow does not mix with the clean air within the cabinet work zone. Inflow air travels through a return path toward the common air plenum (blower plenum) at the top of the cabinet.
- Approximately 30% of the air in the common plenum is exhausted through the ULPA filter to the room. The remaining 70% of the air is passed through the downflow ULPA filter and into the work area as a vertical laminar flow air stream bathing the work surface in clean air.
- The uniform, non-turbulent air stream protects against cross contamination within and throughout the work area.
- Near the work surface, the downflow air stream splits with a portion moving toward the front air grille, and the remainder moving to the rear air grille. A small portion of the ULPA filtered downflow enters the intake perforations at the side capture zones at a higher velocity (small blue arrows).
- A combination of inflow and downflow air streams forms an air barrier that prevents contaminated room air from entering the work zone, and prevents work surface emissions from escaping into the work zone.
- Air returns to the common air plenum where the 30% exhaust and 78% recirculation process is continued.

Esco Centrifugal Fan with External Rotor Motor (left) vs. Conventional Fan with Standard Motor (right)

- Esco cabinets use German made ebm-papst® permanently lubricated, centrifugal motor/blowers with external rotor designs.
- Integrated blades narrow the profile and eliminate need for a motor shaft.
- Motors are selected for energy efficiency, compact design, and flat profile. The completely integrated assembly optimizes motor cooling.
- All rotating parts are unitized and balanced for smooth, quiet, vibration-free operation.
Sentinel™ Gold Microprocessor Control System, Programmable

- When programmed ON, the start-up sequence confirms status with Air Safe and local time display.
- the Personal Identification Number (PIN) access restricts unauthorized adjustments.
- an airflow alarm warns of deviations from normal velocities.

- The cabinet work zone has no welded joints to collect contaminants or rust.
- All stainless steel work surfaces are accessible for cleaning.
- Tray is equipped with handle to ease lifting and removal to provide easy access and encourage surface decontamination.
- A recessed central area and stainless steel drain pan channels spills to the drain hole to facilitate draining.
- The drain pan is flush with the side walls to eliminate concealed or hard-to-clean spaces.
- There are no screws in on the front or sides to trap contaminants or complicate cleaning.
- Optional service fittings are offset for easier access.
- External plumbing is concealed behind trim panels to maintain aesthetics.
- External surfaces are coated with Esco Isocide™ antimicrobial coating to protect against surface contamination and inhibit bacterial growth. Isocide eliminates 99.9% of surface bacteria within 24 hours of exposure.

Comfortable Ergonomic Design
The LA2 cabinet is engineered for comfort, utility value and safety.
- The 10° angled viewing window and narrow profile front grille improves reach into the work area.
- The instant-start 5000k fluorescent lamp operates on an electronic ballast.
All exterior painted surfaces are powder-coated with Esco Isocide, an antimicrobial inhibitor to minimize contamination. Isocide is integrated into the coating substrate and cannot wash out or diminish by repeated cleaning. Performance results are available upon request.

Dynamic Chamber™ Plenum Design

The Esco triple-wall design creates a Dynamic Chamber plenum which surrounds contaminated areas with negative pressure, preventing the possibility of contamination from leaks in filter seal, gasket or cabinet structure. The third wall conceals utilities.

- A generous sash opening allows for easier access into the work zone, provides ample room for transferring of small equipment.
- The sliding window can be fully opened to insert and remove larger instrumentation and equipment.

Electrical Safety and Certification

All components meet or exceed applicable safety requirements.

- Each cabinet is individually tested for electrical safety at factory.
- Documentation specific to each cabinet serial number is maintained on file.
- Certified EN 12469 by Health Protection Agency (HPA) UK.
- Contact Esco or your Sales Representative for site preparation information; see Electrical Specifications.

Warranty

The Labculture cabinet is warranted for 4 years excluding consumable parts and accessories. (Note: Updated warranty policy is available from Esco’s website and the policy is subject to change from time to time. Otherwise, contact your local Sales Representative for warranty details).

- Each cabinet is shipped with a comprehensive user’s manual complete with a report documenting all test procedures.

- Additional IQ/OQ documentation is available upon request.
- Contact your local Sales Representative for specific warranty details or documentation requests.

Support Stands

- Fixed height, available 711 mm (28") or 864 mm (34”), ±38.1 mm (1.5") - With leveling feet
- With casters

- Adjustable height, hydraulic range 711 mm to 864 mm (28" to 34") - With leveling feet
- With casters

- Telescoping height stand for leveling feet, nominal range 660 mm or 960 mm (26" or 37.8")

- Telescoping height stand for casters, nominal range 660 mm or 880 mm (26" or 34.6") - Adjustable in 25.4 mm (1") increments

Standards Compliance

<table>
<thead>
<tr>
<th>Standards Compliance</th>
<th>Biosafety Cabinets</th>
<th>Air Quality</th>
<th>Filtration</th>
<th>Electrical Safety</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN 12469, Europe</td>
<td>ISO 14644.1, Class 3, Worldwide</td>
<td>EN-1822 (H14), Europe</td>
<td>UL-C-61010A-1, USA</td>
<td></td>
</tr>
<tr>
<td>JIS B9920, Class 3, Japan</td>
<td>JIS B55239, Class 3, Japan</td>
<td>IESTR-C-001, USA</td>
<td>CSA22.2, No.1010-192, Canada</td>
<td></td>
</tr>
<tr>
<td>JIS B55239, Class 3, Japan</td>
<td>IESTR-C-007, USA</td>
<td>IESTR-C-0034, USA</td>
<td>EN-61010-1, Europe</td>
<td></td>
</tr>
</tbody>
</table>

* Please refer to the specifications table on page 8 for the model listing.

Antimicrobial Powder-Coating

All exterior painted surfaces are powder-coated with Esco Isocide, an antimicrobial inhibitor to minimize contamination. Isocide is integrated into the coating substrate and cannot wash out or diminish by repeated cleaning. Performance results are available upon request.

Model LA2 Biological Safety Cabinet Technical Specifications

1. Exhaust ULPA filter
2. Blower
3. Downflow ULPA filter, angled
4. Standard UV light Retrofit Kit™ provision
5. Standard IV bar Retrofit Kit™ provision (Maximum load for IV bars is 1 kg)
6. Electrical/Electronics panel
7. Fluorescent lamp
8. Plugged service fixture provisions (2 on each side)
9. Electrical outlet Retrofit Kit provision (.9 meter / 3’ model - one single outlet in workzone) (1.2, 1.5 and 1.8 meter / 4’, 5’ & 6’ models - two single outlets in workzone)
10. Stainless steel single-piece work tray
11. Stainless steel armrest
12. Drain valve Retrofit Kit provision
13. Esco Sentinel™ Gold microprocessor control system
14. Safety glass sliding sash window
15. Single-piece stainless steel back wall and side walls
16. Removable side panel for plumbing access

Optional Exhaust Collar Positions for Thimble-Ducting for LA2 Models
General Specifications

International Models

| Model | Nominal Size | External Dimensions (W x D x H) | Gross Internal Dimensions (W x D x H) | Usable Work Area | Tested Opening | Working Opening | Average Airflow Velocity | Airflow Volume | ULPA Filter Typical Efficiency | Sound Emission* | Cabinet Construction | Electrical ** | Net Weight *** | Shipping Weight *** | Shipping Dimensions, Maximum (W x D x H) *** | Shipping Volume, Maximum *** |
|-------------|--------------|---------------------------------|--------------------------------------|------------------|----------------|----------------|---------------------|--------------------------|------------------|--------------------------|----------------|----------------|----------------|----------------|----------------|------------------|----------------|
| LA2-3L1 | 0.9 meters (3') | Without Base Stand: 1115 x 810 x 1540 mm 43.9" x 31.9" x 60.6" | 970 x 623 x 670 mm 38.2" x 24.5" x 26.4" | 0.45 m² (4.8 sq.ft.) | 173 cm² (6.8") | 218 cm² (8.6") | 0.45 m/s (90 fpm) | 272 m³/h (163 cfm) | >99.999% at particle size between 0.1 to 0.3 microns | <57.5 dBA | Electrogalvanized steel with Isocide oven-baked epoxy-polyester powder coating | 220-240V, AC, 50Hz, 1Ø | 243 kg / 536 lbs | 292 kg / 644 lbs | 1200 x 940 x 1940 mm 47.2" x 37.0" x 76.4" | 2.14 m³ (76 cu.ft.) |
| LA2-3L3 | 1.2 meters (4') | Without Base Stand: 1420 x 815 x 1540 mm 53.9" x 32.1" x 60.6" | 1270 x 623 x 670 mm 50.0" x 24.5" x 26.4" | 0.6 m² (6.5 sq.ft.) | 173 cm² (6.8") | 218 cm² (8.6") | 0.30 m/s (60 fpm) | 356 m³/h (213 cfm) | <59.5 dBA | <56.5 dBA | EN 12469 | LA2-3L1 | 238 kg / 525 lbs | 238 kg / 525 lbs | 1530 x 940 x 1940 mm 60.2" x 37.0" x 76.4" | 2.79 m³ (99 cu.ft.) |
| LA2-4L1 | 1.5 meters (5') | Without Base Stand: 1725 x 815 x 1540 mm 67.9" x 32.1" x 60.6" | 1570 x 623 x 670 mm 61.8" x 24.5" x 26.4" | 0.75 m² (8.1 sq.ft.) | 173 cm² (6.8") | 218 cm² (8.6") | 0.30 m/s (60 fpm) | 440 m³/h (263 cfm) | <61 dBA | <56.5 dBA | NSF / ANSI 49 | LA2-3L1 | 283 kg / 624 lbs | 283 kg / 624 lbs | 1950 x 940 x 1940 mm 76.8" x 37.0" x 76.4" | 3.56 m³ (126 cu.ft.) |
| LA2-4L3 | 1.8 meters (6') | Without Base Stand: 2030 x 815 x 1540 mm 79.9" x 32.1" x 60.6" | 1870 x 623 x 670 mm 73.6" x 24.5" x 26.4" | 0.9 m² (9.7 sq.ft.) | 173 cm² (6.8") | 218 cm² (8.6") | 0.30 m/s (60 fpm) | 524 m³/h (313 cfm) | <61 dBA | <56.5 dBA | EN 12469 | LA2-4L1 | 317 kg / 698 lbs | 317 kg / 698 lbs | 2200 x 940 x 1940 mm 86.6" x 37.0" x 76.4" | 4.01 m³ (142 cu.ft.) |
| LA2-5L1 | Without Base Stand: 230 x 815 x 1540 mm 79.9" x 32.1" x 60.6" | Without Base Stand: 1115 x 810 x 2251 mm 43.9" x 31.9" x 88.6" | 1270 x 623 x 670 mm 50.0" x 24.5" x 26.4" | 0.75 m² (8.1 sq.ft.) | 173 cm² (6.8") | 218 cm² (8.6") | 0.30 m/s (60 fpm) | 440 m³/h (263 cfm) | <61 dBA | <56.5 dBA | NSF / ANSI 49 | LA2-4L1 | 350 kg / 772 lbs | 350 kg / 772 lbs | 1950 x 940 x 1940 mm 76.8" x 37.0" x 76.4" | 3.56 m³ (126 cu.ft.) |
| LA2-5L3 | Without Base Stand: 260 x 815 x 2251 mm 79.9" x 32.1" x 88.6" | Without Base Stand: 1115 x 810 x 2404 mm 43.9" x 31.9" x 96.6" | 1570 x 623 x 670 mm 61.8" x 24.5" x 26.4" | 0.75 m² (8.1 sq.ft.) | 173 cm² (6.8") | 218 cm² (8.6") | 0.30 m/s (60 fpm) | 440 m³/h (263 cfm) | <61 dBA | <56.5 dBA | EN 12469 | LA2-5L1 | 383 kg / 846 lbs | 383 kg / 846 lbs | 2200 x 940 x 1940 mm 86.6" x 37.0" x 76.4" | 4.01 m³ (142 cu.ft.) |
| LA2-6L1 | Without Base Stand: 290 x 815 x 2251 mm 79.9" x 32.1" x 88.6" | Without Base Stand: 1115 x 810 x 2404 mm 43.9" x 31.9" x 96.6" | 1870 x 623 x 670 mm 73.6" x 24.5" x 26.4" | 0.75 m² (8.1 sq.ft.) | 173 cm² (6.8") | 218 cm² (8.6") | 0.30 m/s (60 fpm) | 440 m³/h (263 cfm) | <61 dBA | <56.5 dBA | EN 12469 | LA2-6L1 | 413 kg / 909 lbs | 413 kg / 909 lbs | 2200 x 940 x 1940 mm 86.6" x 37.0" x 76.4" | 4.01 m³ (142 cu.ft.) |
| LA2-6L3 | Without Base Stand: 320 x 815 x 2251 mm 79.9" x 32.1" x 88.6" | Without Base Stand: 1115 x 810 x 2404 mm 43.9" x 31.9" x 96.6" | 1870 x 623 x 670 mm 73.6" x 24.5" x 26.4" | 0.75 m² (8.1 sq.ft.) | 173 cm² (6.8") | 218 cm² (8.6") | 0.30 m/s (60 fpm) | 440 m³/h (263 cfm) | <61 dBA | <56.5 dBA | EN 12469 | LA2-6L1 | 448 kg / 987 lbs | 448 kg / 987 lbs | 2200 x 940 x 1940 mm 86.6" x 37.0" x 76.4" | 4.01 m³ (142 cu.ft.) |

*Noise reading at open field condition / anechoic chamber.

**Additional voltages may be available; contact Esco for ordering information.

***Cabinet only, excludes optional stand.

Comprehensive Performance Testing At Esco

Every Labculture LA2 model manufactured by Esco is individually tested, documented by serial number and validated with the following test methods.

- Inflow / downflow velocity
- PAO aerosol challenge for filter integrity
- Airflow pattern visualization
- Electrical safety to IEC61010-1
- Additional K-Discur containment and microbiological testing is performed on statistical sampling basis.
Accessories and Options (Cont.)
- Cradle stand, electrical hydraulic, infinitely adjustable, with casters
 - Elevates to seating or standing work surface height.
 - When lowered permits movement through standard doorway.

Note: Increases exterior dimensions.

Electrical Outlets and Utility Fixtures
- Electrical outlet, Europe / Worldwide
- Petcock (air, gas, vacuum)
 - North America (American) style
 - Europe / Worldwide style DIN 12898, DIN 12919, DIN 3537

Cabinet Accessories
- Germicidal UV lamp
 - Controlled by automatic UV lamp timer through Sentinel micro-processor control panel.
 - Emission of 253.7 nanometers for most efficient decontamination.
 - Lamp is positioned away from operator line-of-sight for safety and proper exposure to interior surfaces.

Note: UV lamp intensity reduces over time and its effectiveness is subject to factors such as relative humidity in the cabinet, ambient air temperature and microbial species in the work zone.
- PVC armrest
 - Chemically treated, improves operator comfort, easy-to-clean. 712 mm (28") standard size.
- Ergonomic lab chair
 - Laboratory grade construction, meets Class 100 cleanliness; alcohol resistant PVC materials
 - Adjustable 395-490 mm (15.6"-19.3")
- Ergonomic foot rest
 - Angled, helps maintain proper posture.
 - Adjustable height
 - Anti-skid coating, chemical resistant finish.
- IV bar, with hooks
 - Stainless steel construction
 - Available for all standard Esco cabinets.
- Microscope viewing device
 - Mounting and viewing puch integrated into sash. Factory installed; specify when ordering.

Microbiological Testing
Esco performs testing in accordance with more than 10 of the world’s most recognized standards for local, regional and international criteria. Testing in our microbiology laboratory is conducted according to NSF / ANSI 49, EN 12469, and JIS K3800. An NSF-accredited biohazard cabinet field certifier is available in-house full-time to supervise all testing work.

Harmless Bacillus Subtilis bacteria is used to challenge the cabinet, then incubated for 48 hours and the Colony Forming Units (CFU) are counted to determine the testing results. Increased microbiological challenge tests with objects inside the cabinet work zone, external airflow disturbance, and Human-As-Mannequin test adapted from Fume Hood development were performed to simulate real-world conditions.

Personnel Protection Test
The test objective is to evaluate the safety of the cabinet for the personnel operating on potentially hazardous samples in the cabinet workzone.
- A nebulizer containing 55 mL of 5 to 8 x 10° spores/mL B.Subtilis spores is placed inside the workzone, 10 cm (4 inches) behind the front opening sash.
- Target slit air samplers and impingers are placed outside the workzone to capture possibly escaping B.Subtilis spores, then the sample is incubated.
- Acceptance: The number of Bacillus Subtilis CFU recovered from the agar plates shall not exceed 10 CFU per test.

Product Protection Test
The test objective is to determine cabinet protection to the product/samples inside the cabinet workzone from environmental contaminants.
- A nebulizer containing 55 mL of 5 to 8 x 10° spores/mL B.Subtilis is placed at 10 cm (4 inches) in front of sash window.
- Target agar plates are placed throughout the entire work surface.
- Acceptance: The number of Bacillus Subtilis CFU recovered from the agar plates shall not exceed 5 CFU per test.

Cross Contamination Test
The test objective is to evaluate cabinet protection from cross contamination of samples placed simultaneously inside the workzone.
- A nebulizer containing 55 mL of spores (5 to 8 x 10°/mL) is placed against one of the workzone sidewalls.
- Target agar plates are placed 36 cm (14") away from the same side wall
- Acceptance: The number of Bacillus Subtilis CFU recovered on agar plates shall not exceed 2 CFU per test.

HPV Test Compliant:
Safer Hydrogen Peroxide Vapor Decontamination Compatibility
Esco biological safety cabinets are Hydrogen Peroxide Vapor (HPV) compliant and decontaminatable cabinets tested with both BIOQUELL and STERIS patented processes. HPV (H₂O₂) is a safer and more efficient alternative to conventional decontamination using formaldehyde (CH₂O):
- HPV is non-carcinogenic and odorless, while formaldehyde is carcinogenic, toxic and has pungent smell.
- If there is a gap on the cabinet sealing, escaping HPV to the lab will decompose to become oxygen and water. Escaping formaldehyde, however, is harmful to people in the lab. Therefore HPV decontamination can be performed while people still working inside the lab, while formaldehyde decontamination must be performed with no one present in the lab. The HPV method improves safety, productivity, and reduces the time to seal the cabinet.
- HPV biological efficacy is independent of environmental variables, whereas formaldehyde efficacy is dependent on such variables.
- HPV has a better penetration capacity, resulting in a full decontamination of the cabinet. The formaldehyde method is known to result in incomplete decontamination.
- HPV is more effective and rapid against biological organisms compared to formaldehyde.
- HPV requires approximately 4-7 hours for set-up, decontamination, and tear-down, compared to a total of 12-15 hours needed to complete a formaldehyde decontamination process.
- HPV decontamination effectiveness is independent of temperature and humidity. Formaldehyde requires temperature above 20°C and relative humidity above 65%.
- For information on the BIOQUELL and STERIS HPV methodologies, contact Esco or your Sales Representative and ask for our HPV Decontamination Whitepapers.
KI Discus Containment Test According to EN 12469 (Potassium Iodide)

Esco is currently one of the few companies in the world equipped to perform the KI Discus test for our customers. The KI Discus test is defined in the European Standard for microbiological safety cabinets, EN 12469, as a test method for validating the operator/personnel protection capabilities of the cabinet.

- The KI Discus test shows excellent correlation with the microbiological test method for operator protection, and is useful for validating the actual containment performance of the cabinet on-site.
- The KI-Discus takes only 45 minutes as opposed to 2 days for microbiological testing.
- Thus, Esco Labculture LA2 models are factory tested on sampling basis using the KI Discus method for operator safety.

Purchase Specifications

LA2 Series Class II, Biological Safety Cabinet

General Performance and Certifications

1. The biological safety cabinet shall comply with Class II requirement EN 12469 or SANS12469, and the manufacturer shall provide a certified copy of containment and performance tests equivalent to or greater than specified in those independent international standards for biological safety.

2. The cabinet shall protect (a) the operator and laboratory environment from particulates generated within the work zone, (b) the product and process within the work zone from airborne contamination from ambient air, (c) and the product and process within the work zone from cross contamination.

3. The cabinet shall be tested by KI-Discus test (European Standard EN12469:2000) on statistical sampling basis to validate operator/personnel protection. The retention efficiency for the front aperture shall be less than 99.999%. Microbiological testing for cabinet performance shall also be performed on a statistical sampling basis.

4. Each cabinet shall be tested for electrical safety per EN 6101.

5. Original documentation specific to each cabinet serial number shall be provided with the cabinet and maintained in the manufacturers’ records. Test data verifying all performance criteria shall be available upon request to include: (a) inflow velocity through direct inflow measurement method; (b) downflow velocity and uniformity; (c) filter leak scan with aerosol challenge for both filters; (d) electrical safety.

Filteration System

6. The cabinet shall have one supply downflow filter and one exhaust filter. Both filters shall be UL-RP type per IEST-RP-CC001 and meet EN1822 (H14) requirements.

7. The filters shall be within an aluminum frame with mini-pleat design without aluminum separators; no wood or filterboard shall be used in the filter assembly.

8. Typical filter efficiency shall be ≥99.999% at MPPS and between 0.1 to 0.3 microns.

9. An integral filter guard shall be affixed to prevent damage to the filter media.

10. The filters shall be (a) individually scan tested by the manufacturer, (b) individually scan tested after assembly, and (b) easily accessible for scan testing in situ by means of a dedicated upstream sampling port accessible from within the cabinet.

11. The supply filter shall be angled and oriented to the 10° cabinet front angle to maximize downflow uniformity over the work surface.

12. A removable, perforated metal diffuser shall be installed below the supply filter to optimize airflow uniformity and to protect from damage.

Blower System

13. The cabinet shall have a direct drive, permanently lubricated centrifugal blower/motor dynamically balanced in two planes compliant to ISO2710 for low noise, low vibration and long filter life.

14. The blower/motor shall have an automatic thermal cut-out to disable the motor in case of overheating.

15. The blower/motor shall compensate for filter loading.

16. The blower/motor system shall be equipped with a dynamic chamber shaped steel plenum and integrated with the removable supply filter assembly to simplify filter changing.

17. The integral damper shall be externally adjustable.

Cabinet Design, Construction, Cleaning

18. The cabinet shall be of triple wall design whereby all positive pressure plenums capable of handling contaminated air shall be surrounded by negative pressure. No positive pressure areas shall be accessible external to the cabinet. The third wall shall conceal utilities.

19. The cabinet shall maintain containment performance even when removable work area components are removed for cleaning.

20. The work tray shall be one-piece, removable, stainless steel with radius corners without crevices or joints.

21. The cabinet shall have a stainless steel, one-piece fabricated drain trough with open angles to channel spills through the cabinet drain.

22. The closed sidewalk shall be sealed without perforations, return air slots or concealed areas which can contain contaminants.

23. The cabinet shall be free of sharp edges, non-functional protrusions, bolts, screws or hardware, and all metal edges shall be deburred.

24. The cabinet exterior top shall be slanted to discourage placement of foreign objects and to maintain proper exhaust airflow.

Ergonomics and Convenience

25. The front sash shall be frameless to maximize visibility, and accessible for cleaning front and back. Sash glass shall be safety glass.

26. The sash counterbalance shall be suspended on two high-strength cables, and the sash shall lock into position in the event one cable becomes detached.

27. Magnetic, not mechanical, proximity sensors shall work in conjunction with the control system to indicate proper sash position for containment.

28. Fluorescent lamps shall be mounted behind the control panel module out of the work zone. Electronic ballasts shall be used to eliminate flicker, extend lamp life and reduce heat output.

29. The UV lamp shall operate via an automatic timer with automatic shut-off managed by the microprocessor controller and shall be interlocked with the blower/motor and fluorescent lights for safety.

30. The cabinet shall be designed with a 10° angled front to optimize user comfort, reduce glare and maximize reach into the work area.

31. The front grille shall be raised to prevent airflow blockage and improve comfort.

32. Penetrations for petcocks and service fittings shall be provided; penetrations shall be offset to improve user access.

33. The cabinet shall accommodate an optional mounting stand for fixed-height or adjustable-height configurations.

Control and Alarm System

34. All cabinet functions shall be managed by a programmable microprocessor control system capable of software updates via Internet downloads.

35. The microprocessor controller shall be mounted on the main control panel facing down toward the user.

36. The controller shall include soft-touch keypad controls and backlit LCD displays to permit operation of the blower/motor, light, UV lamp, electrical outlet(s) and menu.

37. The controller shall be user programmable in situ to enable or disable functions such as PIN (personal identification number) access restriction, cabinet start-up protocol, airflow alarm and other microprocessor controlled operations outlined in the user manual.

38. When programmed ON, the start-up protocol shall perform an automatic pre-purge and post-purge cycle to ensure proper cabinet operation.

39. The controller shall include a blower/motor hours meter to display aggregate motor running time to assist in predictive maintenance.

40. Audible and visual alarms shall be provided for unsafe conditions such as improper airflow or sash position.

41. Airflow shall be monitored by a temperature compensating, thermostar-based, true air velocity sensor mounted in the cabinet.

42. The airflow display and alarm system shall be individually calibrated before shipment.

43. The main control panel shall exhibit continuous display of air velocity and a 24-hour clock display.

44. Diagnostics button should be available on the control panel, to easily check the cabinet operating parameters and assist servicing.

45. The BSC shall have RS 232 data output port for remote monitoring of cabinet operating parameters.

46. TC/RP converter shall be available as an option, to connect RS 232 to network for remote monitoring.

Certification, Service and Decontamination

47. The cabinet shall be approved for both hydrogen peroxide vapor (HPV) and formaldehyde decontamination protocol.

48. All panels leading to potentially contaminated and/or hazardous areas shall be color coded red.

49. All components with the exception of blower/motor and UDA filters shall be located outside of contaminated air spaces to facilitate servicing without the need to decontaminate the cabinet.

50. All exterior surfaces shall be painted with a permanent antimicrobial inhibitor coating to minimize contamination.
Since 1978, Esco has emerged as a leader in the development of controlled environment, laboratory and pharmaceutical equipment solutions. Products sold in more than 100 countries include biological safety cabinets, compounding pharmacy equipment, containment / pharma products, ductless fume hoods, in vitro fertilization workstations, lab animal research products, laboratory fume hoods, laboratory ovens and incubators, laminar flow clean benches and PCR products and instrumentation. With the most extensive product line in the industry, Esco has passed more tests, in more languages, for more certifications, throughout more countries than any biosafety cabinet manufacturer in the world. Esco remains dedicated to delivering innovative solutions for the clinical, life science, research and industrial laboratory community. www.escoglobal.com.